
E93
VHDL Diagrams

Getting Started

● Sketch the solution

● Identify top level entity

● Global inputs and outputs

● Local signals

PS3 Counter

PS3 Counter (with signal labels)

ALU Test Bench

● Sketch the solution

● Identify top level entity

● Global inputs and outputs

● Local signals

● Get working with simple ALU first
○ Use + and - operators

○ Use shift_left() and shift_right() (or wait until barrel shifter is reviewed)

○ Use and, or, xor etc on std_ulogic_vectors

● Verify the test bench works with the simple ALU

● Replace the simple ALU with your custom ALU

ALU Test Bench

● Use switches for building values for

the inputs

● We’re using smaller inputs just for

testing. Inputs are signed 4 bit

numbers, displays support 8 bits,

results supports full word.

● Good idea to support positive and

negative inputs

● Use switches for the ALU function

● Use HEX displays for operands and

result

● Use LED’s for any PSW or other ALU

outputs

○ zero detect is one example

ALU Test Bench

Memory test bench

● Only showing a subset of the memory

inputs

● Continually copies from one mem

address to another

● Stores the memory read in a register

● Not shown:

○ Connect slide switches to the clock

divide (currently hard coded)

PS6 Demo

http://drive.google.com/file/d/1JLn9v2uzE-Ox-YSYRwJGeMBFleyR1QaZ/view

PS6 Tips 1

● The 10 steps in the memory handshake protocol are for each READ and

WRITE.

● DE2-70 users must set an extra param in their project’s .qsf file or you will get

compile time errors

● 0x1dea and 0x0b0e are memory addresses but the Quartus tools for viewing /

changing memory are WORD indexes.

● Create a spreadsheet for the memory test bench combinational logic and

FSM. This is a good exercise before implementing one for your full cpu. It

makes writing the VHDL trivial!

● Create your top level entity and instantiate the components you need

(memory controller, hex mappers, and register) and get it to compile BEFORE

implementing any combinational logic or the FSM.

PS6 Tips 2

● The memory controller code is all std_logic_vector. You’ll need to use the

cast functions to connect them to your std_ulogic_vector signals. No cast is

necessary for std_logic to std_ulogic, only needed for the vectors

● Casts can be used on either side of the port map

Modifying memory

● See Application Note 4 on the course web site

● Creating a MIF file may save you some time

DEPTH = 16384; -- The size of memory in words

WIDTH = 16; -- The size of data in bits

ADDRESS_RADIX = HEX; -- The radix for address values

DATA_RADIX = HEX; -- The radix for data values

CONTENT -- start of (address : data pairs)

BEGIN

0ef5 : 1234; -- we are reading from address 0x1dea

0587 : 1111; -- we are writing to address 0x0b0e

END

The memory handshake protocol (as seen from the processor side)

is:
1) Wait for mem_dataready_inv to go high.

2) Set the address lines (mem_addr), mem_rw line, mem_sixteenbit line,

and mem_thirtytwobit line.

3) Set mem_addressready high.

4) Wait for mem_dataready_inv to go low.

5) mem_addr, mem_rw, mem_sixteenbit, and mem_thirtytwobit no longer

need to be kept stable.

6) If the operation is a read (i.e., mem_rw is low), read the input

data from the input data lines (mem_data_read).

7) If the operation is a write (i.e., mem_rw is high), then set the

output data lines (mem_data_write) with the appropriate data to be

written to memory. Of course, the mem_data_write lines can be set

earlier (for example, in step 2 when the other lines are set).

8) Set mem_addressready low.

9) Wait for mem_dataready_inv to go high if you want to know that the

write to memory has completed.

10) mem_data_write no longer needs to be kept stable.

The next cycle starts with: 1) Wait for mem_dataready_inv to go high.

Logic for PS6

